
1

Software Supply Chain Security

White Paper

Understanding
Software Supply Chain
Attacks

2

Table of Content

Introduction..3
What is a Software Supply Chain Attack?........................4
Anatomy of a SSCS Attack	 ...4
Taxonomy of a SSCS Attacks..5
Software Supply Chain Security Threats
in the Source Stage..6
Software Supply Chain Security Threats
in the Build Stage..8
Software Supply Chain Security Threats
in the Package Stage...10
Dependency Threats..12
in the Software Supply Chain...12
SSCS Threats that Can Attack...13
the Haul SDLC...13
How to mitigate ...14
Software Supply Chain Attacks.................14

©Xygeni Secuirty 20’24

https://xygeni.io/

3

Introduction

Software supply chain attacks are becoming
increasingly prevalent and devastating, with Gartner
predicting that 45% of all businesses will experience
a breach by 2025. Cybersecurity Ventures further
underscores the gravity of this threat, projecting a
staggering $138 billion in annual damages caused
by software supply chain attacks by 2031. These
alarming forecasts highlight the urgent need for
organizations to prioritize software supply chain
security and implement robust measures to protect
their sensitive data, operations, and reputations.
The rise of third-party components, accelerated
software development cycles, complex supply chains,
lack of visibility, evolving attack techniques, SaaS
adoption, and limited resources are all contributing
factors driving the surge in software supply chain
attacks. Organizations need to adopt a comprehensive
and proactive approach to address these challenges
and safeguard their software supply chains.

https://www.gartner.com/en/articles/7-top-trends-in-cybersecurity-for-2022
https://world.einnews.com/pr_news/659375862/software-supply-chain-attacks-to-cost-the-world-60-billion-by-2025

4

What is a
Software Supply Chain Attack?
ENISA defines SSCA as “a compromise of a particular asset, e.g. a software provider’s infrastructure and commercial software,
with the aim to indirectly damage a certain target or targets, e.g. the software provider’s clients.” In other words, a Software
Supply Chain Attack refers to a malicious activity targeting the software supply chain, aiming to compromise and introduce
vulnerabilities or malicious elements into the software development and distribution process. This attack capitalizes on the
interconnected and often complex network of processes, tools, and entities involved in creating and delivering software.

The academic cyber threat intelligence and infosec literature had segmented software supply chain
attacks into distinct categories for a more comprehensive understanding. We provide an introduction to
these concepts based on the MITRE Attack Pattern Catalog. This catalog - describes supply chain attack
patterns to facilitate analysis using various sources, including the adversarial threats compiled by NIST.

Attack Act: The What.
An action that causes a malicious payload or intention to be
delivered to or directed at a system to adversely affect that system
•	 Example 1: Malware is inserted into system software during

the build process
•	 Example 2: System requirements or design documents are

maliciously altered.

Attack vector: The How
The route or method used by an adversary to exploit system
design vulnerabilities or process weaknesses to cause
adverse consequences. (Attack vectors are how adversaries
can access attack surfaces, which can be thought of
as reachable and exploitable vulnerabilities). The term
Tactics, Techniques and Procedures (TTPs) was coined for
describing the adversarial behavior at different levels of detail.
•	 Example 1: An adversary with access to software

development tools and processes during the software
integration and build process

•	 Example 2: An adversary gains unauthorized access to
system technical documentation

Attack Origin: The Who
The source of an attack. Information to identify the adversary’s
role, status, and/or relationship to the system development and
acquisition (e.g. inside or outside the acquiring organization and/or
supply chain, type of job performed, etc.).
Types of adversaries include cyber criminals, hack-tivists, state-
sponsored threat groups (aka APTs, Advanced Persistent Threats),
and malicious insiders.

Attack Goal: The Why
The adversary’s reason for the attack. Typical objectives include
ransom, espionage, sabotage, intellectual property theft,
abuse of resources or plain theft. More than one may apply.

Attack Impact: The Consequences
What the attack accomplishes, its impact on the affected
organizations. Common consequences are financial loss due to
system downtime, lost revenue, extra costs from abused cloud
resources, reputational damage, loss of customers or partners.

Anatomy of a SSCS Attack

https://www.enisa.europa.eu/publications/info-notes/supply-chain-attacks
https://www.mitre.org/sites/default/files/publications/supply-chain-attack-framework-14-0228.pdf

5

Taxonomy of a SSCS Attacks
Numerous types of software supply chain attacks (SSCAs) exist.
The “Software Supply Chain Attacks: An Illustrated Typological
Review” delineates two prominent frameworks for classifying
and analyzing SSCAs.

The first type of frameworks, analogous to attack technique
catalogs, provides a comprehensive assessment of TTPs
employed in SSCAs. Examples of these types of frameworks
are the MITRE ATT&CK framework, the Common Attack Pattern
Enumeration and Classification (CAPEC) or the ENISA framework.
A similar catalog for generic cybersecurity countermeasures
is the D3FEND Ontology vulnerabilities from MITRE.

The second category of frameworks related to Software Supply
Chain Attacks (SSCAs) focuses on the threat/vulnerability
landscape encompassing the entire software supply chain

perimeter. These frameworks highlight the diverse risks
of compromise at each lifecycle stage, emphasizing the
interconnectedness of the supply chain and the potential for
compromise to propagate across different stages. Examples
such as The SLSA framework, The US National Institute
of Standards and Technology (NIST), or the Cybersecurity
and Infrastructure Security Agency (CISA) discern between
different stages.

In this white paper, we will focus on the most common
software supply chain security threats at the different stages
of the software supply chain lifecycle, with a particular
focus on the second type of framework mentioned above.

We distinguish between the following phases of the software
lifecycle: Source, build, package, and dependency threats.

Dependency

Source Build Package User

Submit Bad Code
Compromise source repo
Build from modify source
Write Insecure Code
Tampering critical files

Bypass CI/CD
Modify code after source control
Compromise build platform
Compromise artifact repository

Use compromised package
Compromise package registry
Upload Modified Package

Use compromised dependency

Core Strategies for Protecting Our Software Factory

https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/584947/2/Cyber-Reports-2023-01-Software-Supply-Chain-Attacks.pdf
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/584947/2/Cyber-Reports-2023-01-Software-Supply-Chain-Attacks.pdf
https://attack.mitre.org/techniques/T1195/
https://capec.mitre.org/
https://capec.mitre.org/
https://www.enisa.europa.eu/publications/threat-landscape-for-supply-chain-attacks/@@download/fullReport
https://d3fend.mitre.org/
https://slsa.dev/spec/v1.0/
https://www.cisa.gov/sites/default/files/publications/defending_against_software_supply_chain_attacks_508_1.pdf
https://www.cisa.gov/sites/default/files/publications/defending_against_software_supply_chain_attacks_508_1.pdf
https://www.cisa.gov/sites/default/files/publications/19_0424_cisa_nrmc_supply-chain-risks-for-information-and-communication-technology.pdf
https://www.cisa.gov/sites/default/files/publications/19_0424_cisa_nrmc_supply-chain-risks-for-information-and-communication-technology.pdf

6

Examples of Source Threats

Software Supply Chain Security
Threats in the Source Stage

1. Submit bad code

Submitting bad code refers to the practice of committing
code to a source repository that contains defects, errors,
or vulnerabilities. This can range from malicious code
intentionally introduced to compromise the integrity
or security of the software, to unintentional code that
introduces bugs or vulnerabilities due to poor coding
practices or lack of testing. An example of this vector
attack was the NPM attack. In 2022, a hacker infiltrated

the source code repository of a popular open-source
software library called npm. The hacker inserted
malicious code into the library’s code that allowed
them to gain unauthorized access to the systems of
organizations that installed the library. The malicious
code allowed the hacker to steal data from the affected
systems, install malware, and disrupt operations. The
attack affected a wide range of organizations, including
government agencies, businesses, and individuals.

The source stage of the software supply chain lifecycle encompasses the initial phases of software
development, from ideation to the creation of source code. This stage involves the selection of tools, libraries,
and components, as well as the development and implementation of the software’s core functionalities.
Software supply chain security threats in the Source Stage refer to security vulnerabilities that can
be exploited to introduce unauthorized or malicious changes to the source code. This includes the
threat of both unauthorized individuals and authorized individuals introducing unauthorized changes.

https://www.cpomagazine.com/cyber-security/hackers-use-malicious-npm-packages-to-steal-data-in-the-iconburst-supply-chain-attack/

7

Software Supply Chain Security Threats
in the Source Stage

2. Build from a modified source

An adversary obtains a copy of the source code from a
source other than the official source code repository and
uses it to build and deploy the software. This modified
source code may contain malicious code, backdoors,
or other harmful alterations that can compromise the
integrity, functionality, or security of the software. An
example of this vector attack was the Webmin Attack. An
attacker gained unauthorized access to Webmin’s build
infrastructure, which is responsible for compiling and
packaging the Webmin software. The attacker modified
the build infrastructure to use source files that were not
present in the official Webmin source repository.

3. Compromise source repo

An adversary gains unauthorized access to a source code
repository (SCM) and introduces malicious changes or
removes legitimate code. This can be achieved through
various methods, such as exploiting vulnerabilities in the
SCM, compromising the credentials of a developer with
access to the repository, or gaining access to the underlying
infrastructure hosting the SCM. An example of this vector
attack was the PHP Attack. An attacker compromised
PHP’s self-hosted Git server, which is a secure repository
for storing and managing the source code for the PHP
programming language. The attacker was able to inject
two malicious commits into the main codebase of PHP.
These commits added backdoors that allowed the
attacker to gain unauthorized access to PHP installations.
The backdoors allowed the attacker to execute arbitrary
code on any PHP installation, which could be used to steal
data, install malware, or disrupt operations. The attack
also caused a great deal of reputational damage to PHP, as
it raised concerns about the security of the programming
language.

4. Write insecure code

Insecure coding practices, either intentional or
unintentional, can introduce vulnerabilities into software.
These vulnerabilities can be exploited by attackers to
gain unauthorized access, modify or steal data, or disrupt
operations. An example of this vector attack was the
Apache Struts Attack. In 2003, a hacker infiltrated the
source code repository of the open-source software library
called Apache Struts. The hacker introduced a vulnerability
into the library that allowed them to gain unauthorized
access to the systems of organizations that installed the
library. The vulnerability allowed the hacker to execute
arbitrary code on the affected systems, which could be
used to steal data, install malware, and disrupt operations.
The attack affected a wide range of organizations, including
government agencies, businesses, and individuals.

5. Tampering critical files

Altering or modifying critical files in the software
development lifecycle can have severe consequences,
including the introduction of malicious code, the
compromising of sensitive data, and the disruption of
software operations. An example of this tampering vector
attack was the Maven Attack. In 2020, hackers infiltrated
the source code repository of a popular open-source
software library called Maven. The hackers inserted
malicious code into the library’s pom.xml file, which is
used to configure the build process. The malicious code
allowed the hackers to inject their dependencies into the
build process, which were then included in the compiled
software. These dependencies contained backdoors that
allowed the hackers to gain unauthorized access to the
systems of organizations that installed the software.

| Examples of Source Threats

https://webmin.com/security/#remote-command-execution-cve-2019-15231
https://news-web.php.net/php.internals/113838
https://www.pcworld.com/article/412341/hackers-exploit-apache-struts-vulnerability-to-compromise-corporate-web-servers.html
https://mvnrepository.com/artifact/org.springframework.ws/spring-ws-security

8

1. Bypass CI/CD

This refers to the practice of circumventing the established
CI/CD (continuous integration and continuous delivery)
pipeline to directly build and publish software without
undergoing the rigorous testing, verification, and auditing
processes that are typically enforced by the official pipeline.
This can be done by manually building the software outside
of the CI/CD environment or by using tools or scripts that
allow for unauthorized modifications
to the build process. An example of this type of vector
attack was the Jenkins Attack. In 2022, hackers infiltrated

the build pipeline of a popular open-source software project
called Jenkins. The hackers injected malicious code into a
Jenkinsfile, which is a script that defines the build process.
The malicious code allowed the hackers to bypass the CI/
CD pipeline’s security checks and inject their code into the
build process. This code is then executed on the systems
of organizations that installed the software.

The build stage of the software supply chain lifecycle encompasses the process of transforming source code into
executable software artifacts. This stage involves compiling, linking, and packaging the source code, as well as
generating installation packages and configuration files.

Build integrity threats are vulnerabilities that could allow an adversary to introduce unauthorized changes to the
software during the build process without altering the source code. These threats can be introduced through various
methods, such as compromising the build environment or exploiting vulnerabilities in build tools.

Software Supply Chain Security
Threats in the Build Stage

Examples of Source Threats

https://securityboulevard.com/2022/04/compromising-ci-cd-pipelines-with-leaked-credentials-security-zines/

9

2. Modify code after source control

This practice involves making unauthorized changes
to source code after it has been committed to a trusted
source control system (SCS) and then building the
software using this modified code. This can be done by
directly modifying the code on a developer’s workstation
or by using external tools or scripts to inject malicious
code into the build process. An example of this vector
attack was the GitLab Attack in 2022. Hackers infiltrated
the build pipeline of GitLab. The hackers injected malicious
code into the GitLab CI/CD pipeline, which is a tool that
automates the build process. The malicious code allowed
the hackers to modify the code after it had been checked
into source control. This allowed them to inject their code
into the software, which was then executed on the systems
of organizations that installed the software.

.3. Compromise build process

This involves manipulating or altering the build process
itself, either through direct access to the build environment
or by exploiting vulnerabilities in build tools or third-party
dependencies. This can be done to introduce malicious
code into the build output, tamper with build provenance,
or disrupt the build process altogether. The most famous
example of this vector attack was the SolarWinds Attack.
An attacker had gained unauthorized access to SolarWinds’
build platform, a system used to compile and package
SolarWinds Orion software. This script injected malicious
code into the compiled SolarWinds Orion software. When
users installed the compromised software, the malicious
code was executed on their systems, giving the attacker
unauthorized access to their systems. The attacker was
also able to steal sensitive data from their systems,
such as credentials, intellectual property, and customer
information.

.4. Compromise artifact repository

This refers to the unauthorized access or manipulation
of an artifact repository, where software packages and
binaries are stored for distribution to internal or external
users. Attackers can exploit this vulnerability to introduce
malicious code, tamper with the authenticity of the
software, or disrupt the deployment process. An example
of this vector attack was The RubyGems in 2022. Hackers
infiltrated the artifact repository of RubyGems. The hackers
replaced a legitimate artifact with a malicious one, which
was then downloaded by thousands of organizations
building software with Ruby on Rails. The malicious
artifact allowed the hackers to execute arbitrary code on
the systems of organizations that installed the software.
This could potentially allow them to steal data, install
malware, or disrupt operations.

Software Supply Chain Security Threats
in the Build Stage | Examples of Source Threats

https://docs.gitlab.com/ee/user/analytics/ci_cd_analytics.html
https://www.crowdstrike.com/blog/sunspot-malware-technical-analysis/http://
https://www.bleepingcomputer.com/news/security/malicious-rubygems-packages-used-in-cryptocurrency-supply-chain-attack/

10

The package stage of the software supply chain lifecycle encompasses the process of packaging and preparing
software for distribution to users. This stage involves creating installation packages, managing dependencies, and
generating metadata for the software.

Build integrity threats are vulnerabilities that could allow attackers to introduce unauthorized changes to the software
during the packaging process. These threats can be introduced through various methods, such as compromising
the package registry, exploiting vulnerabilities in packaging tools, or manipulating third-party dependencies.

The total dependency on open-source components in modern software made this stage the most frequent SSCA
target. Introducing stealth malware in a popular open-source component is a dream for many cyber criminals. This
is why more than 245,000 malicious packages were found during 2023.

1. Use compromised package

This refers to the act of deploying or using a software
package that has been tampered with or modified by an
adversary. This can happen after the package has left
the official package registry, either through direct access
to the user’s system or through social engineering
tactics that trick the user into downloading or installing
a malicious package. An example of this vector was the
Browserify Typosquatting Attack. An attacker, seeking
to compromise Linux and Mac systems, infiltrated the
development process of a popular

Node.js library called Browserify. The attacker slipped
malicious code into the project’s source code, intending
to distribute it through the NPM package registry. Once
the tainted Browserify package was uploaded to NPM,
unsuspecting developers would download and install it,
believing it to be the legitimate version. The malicious
code, embedded within the package, would run silently,
compromising the integrity of the systems it infected.
This could lead to data theft, system instability, or even
remote access for the attacker.

Software Supply Chain Security
Threats in the Package Stage

Examples of Source Threats

https://www.sonatype.com/resources/white-paper-state-of-the-software-supply-chain-2020
https://www.bleepingcomputer.com/news/security/new-linux-macos-malware-hidden-in-fake-browserify-npm-package/

11

2. Compromise package registry

A compromised package registry is a software
repository that has been infiltrated by an adversary
who has gained unauthorized access to the registry’s
administrative interface or infrastructure. This allows
the adversary to modify or replace legitimate software
packages with malicious ones, which can then be
distributed to users who unsuspectingly install them.
An example of this type of threat was the Attack
on Package Mirrors: A researcher, with the intent of
promoting open-source software, compromised several
popular package registries, including Maven Central,
NPM, and RubyGems. By gaining access to these
registries, the researcher was able to create mirrors,
and replicas of the original repositories, which provided
a convenient alternative for developers to download
packages. However, these mirrors harbored a sinister
purpose. The compromised mirrors served as conduits
for the researcher to distribute malicious packages.
These packages replaced legitimate ones, undetected
by the primary registries, and unsuspecting developers
unknowingly downloaded and installed them. Once
installed, these malicious packages unleashed their
payload, executing arbitrary code, stealing sensitive
data, or disrupting operations.

3. Upload Modified Package

An adversary uploads a modified package to a repository
or distribution channel that contains malicious code or
payloads. This can be done by modifying the package’s
source code, packaging, or metadata. One of the most
notorious of this type of threat was the CodeCov
Attack in 2021. An attacker, seeking to compromise
software projects using CodeCov, a popular continuous
integration and continuous delivery (CI/CD) tool, utilized
leaked credentials to gain unauthorized access to a
project’s Google Cloud Storage (GCS) bucket. Once the
attacker gained access to the GCS bucket, they uploaded
a malicious artifact, a modified version of the CodeCov
package, which was then distributed to users through

the CodeCov service. Unsuspecting developers, relying
on the automatic updates feature, would download
and install the malicious package, believing it to be the
legitimate one. Once installed, the malicious code would
run silently, compromising the integrity of the systems it
infected. This could lead to data theft, system instability,
or even remote access for the attacker.

Attacks to the package registries are so common that
some attack patterns received a name:
•	 In Typosquatting, the bad actor uploads to the

registry multiple malicious packages with slight
typo errors or similar names to legit, popular ones,
with the hope that developers will misspell the
intended package name with a malicious one. Often
the malicious package masquerades the legit one
to pass undetected, augmenting the probability of
being hit with stargazing.

•	 Dependency Confusion leverages the way some
package managers resolve the requested packages
from multiple registries. When an organization
uses internal components published in an internal
registry, an attacker that knows the fact may publish
a malicious component with the same name in
a public registry. If the name used for the internal
component is not scoped, some package managers
will fetch the malicious component instead of the
internal one.

•	 With Troyan Packages, the cybercriminal disguises
malware among useful valid code. This could be
used by the real author, or by a contributor that
offers himself for maintaining the package. This is
also known as Package Hijacking. And attackers
used many techniques to hijack an existing package,
like Domain Takeover where an abandoned expired
domain was taken by the attacker that re-created
the old maintainer email and performed password
recovery to take over the maintainer account.

Software Supply Chain Security Threats
in the Package Stage | Examples of Source Threats

https://theupdateframework.io/papers/attacks-on-package-managers-ccs2008.pdf
https://theupdateframework.io/papers/attacks-on-package-managers-ccs2008.pdf
https://about.codecov.io/apr-2021-post-mortem/
https://about.codecov.io/apr-2021-post-mortem/
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610

12

Use Compromised Dependency

Dependency Threats
in the Software Supply Chain

A compromised dependency is a situation where an
adversary has inserted malicious code or payloads
into a third-party library or dependency that is used
by the software artifact. This can happen during the
development of the third-party library or dependency,
or it can happen after the artifact has been deployed to
production.

An example of this attack was the Event-Stream attack
in 2018. An attacker, seeking to compromise software
projects using event-stream, a popular Node.js library
for handling streams of data, added an innocuous
dependency to a project. This innocuous dependency
was not malicious in itself, but it served as a placeholder
for a future malicious update. Once the innocuous

dependency was added to the project, the attacker waited
for the project to be released and for users to download
and install the updated project. Once the project was
updated, the attacker then released a malicious update
to the dependency. This malicious update would then be
downloaded and installed by unsuspecting users, who
believed it to be the legitimate version. Once installed,
the malicious code would run silently, compromising the
integrity of the systems it infected. This could lead to
data theft, system instability, or even remote access for
the attacker.

Dependencies in the software supply chain lifecycle are third-party libraries, tools, or other components that are used
by a software application to function correctly. These dependencies can be included directly in the software code
or downloaded and installed separately. Dependency threats are vulnerabilities that can be exploited by adversaries
to introduce malicious code into a software application through its dependencies.

https://web.archive.org/web/20210909051737/https://schneider.dev/blog/event-stream-vulnerability-explained/
https://web.archive.org/web/20210909051737/https://schneider.dev/blog/event-stream-vulnerability-explained/

13

SSCS Threats that Can Attack
the Haul SDLC

As we’ve discussed, software supply chain attacks
often target vulnerabilities that span the entire software
development lifecycle (SDLC), posing a significant
threat to organizations at every stage. Aside from the
previously mentioned attack vectors, vulnerabilities
and misconfigurations are crucial to consider. These
vulnerabilities and misconfigurations can infiltrate the
SDLC from design and development to deployment and
operation, leaving organizations vulnerable to unauthorized
access, data breaches, or operational disruptions.
Vulnerabilities arise from flaws or weaknesses in the
software itself, while misconfigurations stem from
inadequate setup or configurations. Both vulnerabilities
and misconfigurations can be introduced at any stage
of the SDLC, providing adversaries with opportunities to
exploit them. The NotPetya ransomware attack, which
affected thousands of organizations worldwide in 2017,
serves as a stark example of how vulnerabilities in the

update process can lead to widespread disruption. The
attack originated from a misconfiguration in the Ukrainian
tax software MeDoc update process. The attacker
accessed MeDoc’s update server and uploaded a malicious
version of the software update, which was then distributed
to MeDoc’s customers. When users of MeDoc installed
the malicious update, it installed the ransomware on
their systems, encrypting files and disrupting operations.
This widespread outbreak highlighted the importance
of patching vulnerabilities promptly and of properly
configuring update processes throughout the software
development lifecycle.

Common software supply chain attack techniques

1. Hijacking Updates:
Software vendors regularly release updates to address bugs and security vulnerabilities. Threat actors can hijack the
update process by infiltrating the vendor’s network and either inserting malware into the update itself or modifying the
update to grant them control over the software’s normal functionality. This is how the infamous NotPetya attack in 2017
spread to Ukraine and beyond, causing widespread disruption to various industries, including international shipping,
financial services, and healthcare.

2. Undermining Codesigning:
Codesigning is a security measure that ensures the authenticity and integrity of code. Threat actors can undermine code
signing by self-signing certificates, breaking signing systems, or exploiting misconfigured account access controls. By
doing so, they can impersonate trusted vendors and insert malicious code into updates, making it more likely to succeed.
The China-based threat actor APT 41 has been known to exploit this technique to infiltrate software supply chains.

3. Compromising Open-Source Code:
Open-source code compromises happen when malicious code is inserted into publicly accessible code libraries that
are commonly used by developers. Unsuspecting developers often incorporate these libraries into their third-party code,
inadvertently introducing the malicious code into their software. In 2018, researchers discovered 12 malicious Python
libraries uploaded to the official Python Package Index (PyPI) using typosquatting tactics. These libraries impersonated
the popular “Django” Python library but contained additional functionality, such as the ability to obtain boot persistence
and open a reverse shell on remote workstations. Open-source code compromises can also affect privately owned
software because developers of proprietary code often include blocks of open-source code in their products.

Although there are numerous types of techniques that can be employed in the cybersphere, the Cybersecurity & Infras-
tructure Security Agency (CISA), the National Institute of Standards and Technology (NIST) and the U.S. Department of
Commerce have summarized them in three categories in their publication
”Defending Against Software Supply Chain Attacks”.

https://www.crowdstrike.com/blog/petrwrap-ransomware-technical-analysis-triple-threat-file-encryption-mft-encryption-credential-theft/
https://www.cisa.gov/sites/default/files/publications/defending_against_software_supply_chain_attacks_508_1.pdf

14

How to mitigate
Software Supply Chain Attacks

To mitigate these threats, organizations must adopt a comprehensive software supply chain security strategy that
encompasses the SDLC’s entirety. This strategy should include proactive vulnerability assessments, regular security
testing, and robust authentication and authorization mechanisms. Additionally, organizations should prioritize security
measures during the design and development phases, ensuring that security is embedded into the software from its
inception.

Mitigate Software Supply Chain Attacks

•	 Identify hard-coded secrets in
software components and offer
actionable recommendations for
remediation.

•	 Protect Infrastructure as Code (IaC)
by providing code analysis, policy
enforcement, and vulnerability
scanning.

•	 Detect and resolve misconfigurations
across the DevOps ecosystem.

•	 Prioritize findings based on severity to
enable DevSecOps teams to efficiently
inspect and remediate security issues.

•	 Automate the inventory and
assessment of potential vulnerabilities
in open-source, proprietary, and third-
party components used in software
projects.

•	 Ensure compliance with regulatory
requirements and standards throughout
the software development process.

•	 Systematically enforce standards like
CIS Software SSC, OWASP, OpenSSF,
and SLSA.

•	 Continuously monitor delivery systems,
applications, tools, and teams to ensure
compliance with corporate software
delivery security policies and practices.

•	 Track the provenance of all components
in your software product and inspect
their detailed information for continuous
application risk assessment.

Efficient Risk
Assessment1 2 Continuous

Compliance & SBOM 3 Enhanced Security
Measures for the SSC

•	 Proactively monitor and detect unusual
activity in the software supply chain.

•	 Utilize behavior analytics and anomaly
detection to establish baselines of
normal activity.

•	 Flag suspicious activities and serve
as a mechanism for insider threat
detection.

•	 Out-of-the-box integrations with several
SDLC systems.

•	 REST API and Web UI for customized
integration into the customer’s
ecosystem and processes.

•	 Seamless integration with collaboration
tools and DevOps workflow.

•	 Establish trust with your clientele using
software attestations.

•	 Establish trust with your clientele using
software attestations.

•	 Ensure component security upon
installation.

4 Advanced
Threat Detection 5 Seamless

Integration 6 Secure Build &
Attestation

•	 Implement asset discovery and
comprehensive asset inventory
to gain complete visibility into
all software artifacts, including
components, dependencies, pipelines,
systems, tools, and user involvement
in software projects.

•	 Continuously assess and monitor the
security posture of every asset in the
SDLC.

•	 Offer a unified tool for policy
management, configuration scanning,
and vulnerability management.

•	 Automatically enforce security policies
and standards across the DevOps
ecosystem.

•	 Provide actionable recommendations
for remediation of identified
vulnerabilities.

•	 Proactively identify risky or suspicious
user actions and provide automated
real-time alerts.

•	 Ensure the integrity of critical files.
Enforce security and build procedures.

•	 Automate the remediation of identified
vulnerabilities.

•	 Rapid fix deployment to minimize
downtime and disruption.

7 Comprehensive
Visibility 8 Security

Posture 9 Code Tampering
Prevention & Anomaly

10 Continuous
Remediation

15

Your Comprehensive
Solution for Robust
Software Supply Chain
Security

•	 Comprehensive visibility: Gain a unified view of your
entire SDLC, including components, dependencies,
pipelines, systems, tools, and user involvement.

•	 Automated risk assessment: Leverage Xygeni’s
automated tools to identify and assess vulnerabilities
in open-source, proprietary, and third-party
components, ensuring you stay ahead of the latest
threats.

•	 Enforced security policies: Uphold regulatory
compliance and industry best practices by enforcing
security policies and standards across your DevOps
ecosystem.

 Our suite of features includes:

Xgeni’s comprehensive platform goes beyond traditional
security solutions that focus on isolated phases of
the SDLC or specific threat vectors. We take a holistic
approach to security, providing a unified defense against
all types of threats that can compromise your software
supply chain.
Our approach starts with a thorough analysis of your
current security posture. We assess your SDLC’s
vulnerabilities, identify potential risks, and determine

your organization’s specific needs and security
priorities. This in-depth understanding allows us to
tailor a customized solution that aligns perfectly with
your unique requirements.
Whether you need to mitigate specific threats or secure
your entire SDLC, Xygeni offers a comprehensive
range of solutions to address your security challenges
effectively

Proactively identify and mitigate potential threats
before they can cause damage.

REDUCED RISK OF SUPPLY CHAIN ATTACKS

Automate security processes, gain insights into
security posture and reduce manual effort, accelerating
software delivery.

ENHANCED EFFICIENCY

Meet regulatory requirements and industry standards
across the entire SDLC.

STREAMLINED COMPLIANCE

Safeguard your organization’s sensitive data, operations,
and reputation from evolving threats.

PROTECTED ASSETS

Secure Your Software Supply Chain:
From Design to Delivery with Xygeni’s Approach

•	 Proactive threat detection: Employ advanced threat
detection techniques to proactively identify and
prevent unauthorized access, malicious code, and
other threats from infiltrating your SDLC..

•	 Seamless integration: Seamlessly integrate Xygeni
with your existing SDLC tools and processes,
eliminating the need for siloed security solutions.

•	 Automated remediation and compliance: Automate
the remediation of identified vulnerabilities and
generate evidence of compliance with security policies
and standards, streamlining your security operations.

https://xygeni.io/

16©Xygeni Secuirty 2024

Contact
Get in touch today!

www.xygeni.io
https://www.linkedin.com/company/xygeni
https://twitter.com/xygeni

End To End
Software Supply Chain Security
Protects the integrity and security of your software assets, pipelines and
infrastructure of the entire software supply chain.

http://www.xygeni.io
https://www.linkedin.com/company/xygeni
https://twitter.com/xygeni
https://www.linkedin.com/company/xygeni

https://twitter.com/xygeni
http://www.xygeni.io

	Introduction
	What is a Software Supply Chain Attack?

	Anatomy of a SSCS Attack
	Taxonomy of a SSCS Attacks
	Software Supply Chain Security Threats in the Source Stage
	Software Supply Chain Security Threats in the Build Stage
	Software Supply Chain Security Threats in the Package Stage
	Dependency Threats
	in the Software Supply Chain
	SSCS Threats that Can Attack
	the Haul SDLC
	How to mitigate
	Software Supply Chain Attacks

