
1

Navigating the Future
of Software
Supply Chain Security:
A NIST SP 800-204D
Perspective
Securing the Software Supply Chain in
the DevOps Era: A Practical Guide

2

Table of Content

1. The Future of DevOps ...
The Genesis of DevOps and the Cultural Shift...........................
The Need for Software Supply Chain Security in DevOps..........

2. Understanding Software Supply Chain Security..............

3. SSCS: Guarding the Factory...

4. SSCS Risk Factors and DevOps Mitigation Measures.....

5. Why SSCS is Crucial for Modern DevOps Practices.........

6. Implementing SSCS in DevOps...
Ensure Security Configuration in DevOps Tools........................
Strengthen the Security of Continuous Deployment
(CD) pipelines...
Enhanced Security and Integrity in Continous Integration
(CI) pipelines...

7. Attestations for Secure Software Development................
Critical Components of a Software Attestation Solution...........
The Attestation Workflow: From Collection to Verification.......

8. Benefits of Embracing SSCS in DevOps Environments...

9. Concluding Remarks...

4
5
5

6

8

10

12

14
16

17

18
20
21
22

25

28

3

Introduction

DevOps, a transformative movement that revolutionized software development and operations,
has evolved from a mere methodology to a deeply ingrained culture. To fully comprehend
the significance of Software Supply Chain Security (SSCS) within the context of DevOps, it’s
crucial to delve into the evolution of DevOps itself.

The National Institute of Standards and Technology (NIST), recognizing the growing importance
of SSCS, has developed a new draft publication, NIST SP 800-204D, providing invaluable
guidance on integrating SSCS into DevSecOps CI/CD pipelines. This document meticulously
outlines strategies for seamlessly embedding SSC security measures into CI/CD pipelines,
the intricate processes that transform source code into deployed software, traversing various
stages such as building, testing, packaging, and deployment.

4

CHAPTER 1

DevOps, as many in the industry know, is not just a methodology or a set
of practices; it’s a culture. The movement fundamentally reshaped our
thoughts on software development and operations. But to truly understand
the significance of Software Supply Chain Security (SSCS) in the context of
DevOps, we need to take a step back and look at the evolution of DevOps
itself.

A Brief Overview of the Evolution of DevOps

5

The term “DevOps” emerged as a fusion of “Development”
and “Operations.” At its core, DevOps was born out of a
need to bridge the gap between software developers and
IT operations. Traditional software development models
often saw these two teams working in silos, leading to
inefficiencies, miscommunications, and delays.

In the early days, software was developed in long cycles.
Developers would write code, and once they believed it
was ready, they’d hand it off to operations to deploy. This
“throw it over the wall” approach often led to issues in

production, as the environment in which the code was
written was often vastly different from the production
environment.

DevOps sought to change this by emphasising collaboration
between developers and operations. The idea was
simple: by working together from the start of a project,
many of the issues that arose from the traditional model
could be avoided. This wasn’t just about speeding up
software delivery; it was about improving the quality of
the delivered software.

The Genesis of DevOps and the Cultural Shift

Automation and Continuous Integration (CI)

As the DevOps movement grew, so did the associated tools and practices. Automation became a corner-
stone of DevOps. Instead of manual deployments, which are error-prone and time-consuming, automated
deployment tools ensure that code can be seamlessly moved from development to production.
Continuous Integration (CI) took this a step further. With CI, developers could merge their changes into a
central repository multiple times daily. Automated build and test tools would then check this code, ensuring

1. The Future of
DevOps

The Need for Software Supply Chain Security in
DevOps (SSCS)
With the rapid pace of CI/CD, the software supply
chain has become more complex. The software
wasn’t just being developed in-house; it often in-
cluded multiple third-party components. If not ad-
equately vetted, each of these components could
introduce vulnerabilities into the software.

This is where Software Supply Chain Security
(SSCS) comes into play. As DevOps evolved, it be-
came clear that its speed and efficiency could also
introduce risks. SSCS seeks to address these risks
by ensuring that every component of the software
supply chain is secure.

While DevOps revolutionized how we develop and
deliver software, SSCS is set to revolutionize how
we secure it.

For seasoned DevOps professionals, the integra-
tion of SSCS is a daunting task. But it’s a neces-
sary evolution. Just as DevOps bridged the gap be-
tween development and operations, SSCS seeks
to bridge the gap between speed and security. As
we move forward, those in the DevOps field will
find that a deep understanding of SSCS is not just
beneficial; it’s essential.

The Advent of Continuous Deployment and Delivery (CD)

While CI focused on automating code integration, Continuous Deployment and Continuous Delivery (often
called CD) focused on automating releases. Every change that passed the automated tests could be auto-
matically deployed to production with CD. This meant that software could be developed, tested, and released
far more quickly than ever.

6

CHAPTER 2

Software Development is a complex process that involves integrating
multiple components, libraries, and services from various sources. This
intricate web of dependencies and integrations is what we refer to as the
Software Supply Chain that is susceptible to risks.

Understanding Software Supply Chain
Security (SSCS)

7

Before diving deep into SSCS, let’s first unpack the concept of the software supply chain. Imagine building
a car. You wouldn’t manufacture some parts from scratch. Instead, you’d source various components – the
tires, the engine, the electronics – from different suppliers in a factory - machinery, assembly line protocols,
and people. Similarly, developers rely on numerous external components when developing software, be it
open-source libraries, third-party APIs, or cloud services. They use from Integrated Development Environments
(IDE) to continuous integration tools and from code repositories to deployment automation tools. Their
‘assembly protocols’ are coding standards, best practices, testing protocols, and deployment guidelines.

Each of those third-party components, while aiding in the rapid development of software, also represents
a potential point of vulnerability. If one component is compromised, it could potentially affect the entire
application. At the same time, elements of the assembly line represent a potential vulnerability or point of
entry for malicious actors.

2. Understanding SSCS

SSCS is the discipline of ensuring the integrity, authenticity, and security of each element in the
software supply chain. It’s about vetting third-party components, ensuring secure coding prac-
tices, continuously monitoring for vulnerabilities and securing our Software Factory. But why is
this so crucial?

Before diving deep into SSCS, let’s first unpack the concept of the software supply chain. Imagine building
a car. You wouldn’t manufacture some parts from scratch. Instead, you’d source various components – the
tires, the engine, the electronics – from different suppliers in a factory - machinery, assembly line protocols,
and people. Similarly, developers rely on numerous external components when developing software, be it
open-source libraries, third-party APIs, or cloud services. They use from Integrated Development Environments
(IDE) to continuous integration tools and from code repositories to deployment automation tools. Their
‘assembly protocols’ are coding standards, best practices, testing protocols, and deployment guidelines.

Each of those third-party components, while aiding in the rapid development of software, also represents
a potential point of vulnerability. If one component is compromised, it could potentially affect the entire
application. At the same time, elements of the assembly line represent a potential vulnerability or point of
entry for malicious actors.

2. Understanding SSCS

Dependency

Source Build Package User

Submit Bad Code
Compromise source repo
Build from modify source
Write Insecure Code
Tampering critical files

Bypass CI/CD
Modify code after source control
Compromise build platform
Compromise artifact repository

Use compromised package
Compromise package registry
Upload Modified Package

Use compromised dependency

Increasing Complexity
Modern software applications
leverage many third-party
components, each of which can
be a potential vulnerability. As
software becomes more complex,
the attack surface expands.

Notable Breaches
Several high-profile breaches have
resulted in vulnerabilities in third-
party components or lapses in
the software assembly process
over the past few years. Such
incidents spotlight the critical
need for a fortified supply chain.

Regulatory Compliance
With data privacy and security
regulations becoming stringent
globally, ensuring the security of the
software supply chain isn’t just a best
practice; it’s often a legal requirement.

8

Automated Security Checks
Automation is at the heart of DevOps and
equally crucial in SSCS. Automated tools scan
for vulnerabilities, check for updates, monitor
for anomalous activity and ensure compliance
with security policies.

Continuous Monitoring
The software landscape is dynamic. SSCS
emphasizes the continuous monitoring of all
components, ensuring they remain secure
throughout their lifecycle and ensuring the
assembly line’s integrity.

Observability and Traceability
Maintaining a clear record of every component,
tool and build or delivery process in the software
supply chain is vital. This traceability ensures
that an issue can be traced back to its source
and addressed promptly.

Component and Tools Vetting
Every tool, be it a code repository or a deployment
automation tool, and before integrating any
third-party component, it’s essential to vet them
rigorously. This involves checking for known
vulnerabilities, understanding its maintenance
history, ensuring regular updates, and evaluating
its security posture.

Process Optimization
Processes should be continuously refined to
incorporate the latest security best practices.
This might involve updating coding standards
or tweaking deployment protocols to enhance
securityregulations becoming stringent globally,
ensuring the security of the software supply
chain isn’t just a best practice; it’s often a legal
requirement.

Collaborative Defense
Just as DevOps emphasizes collaboration
between development and operations, SSCS
requires collaboration between developers,
security teams, and operations. Developers,
security experts, operations teams, and even
third-party vendors must collaborate to ensure
the security of the entire software assembly line.

People Training
Regular training sessions should be conducted
to keep the team updated on the latest threats
and best practices. A well-informed team is the
first line of defense against potential security
breaches.

Core Strategies for Protecting Our Software Factory

CHAPTER 3

Software Supply Chain Security is akin to safeguarding the sanctity of a car’s
production line. It’s about ensuring that every part, every process, and every
individual involved is geared towards a singular goal – producing secure, robust,
and reliable software. As the digital realm grows, the importance of SSCS
will only amplify, making it a central tenet of modern software development.

SSCS: Guarding the Factory

9

CHAPTER 4

Understanding the myriad of risks and actively implementing mitigation
measures is paramount. Organizations can fortify their software supply
chain by addressing each risk factor in detail. Software Supply Chain
Security is about ensuring that the speed and efficiency of DevOps do
not come at the cost of security.

SSCS Risk Factors and DevOps
Mitigation Measures

10

4. SSCS Risk Factors and DevOps
Mitigation Measures

1. Developer Environment
Developer workstations and their environments are
susceptible to compromise. Implicit trust in these
workstations can lead to vulnerabilities being
introduced into the software supply chain. Some
mechanisms that could help us face these risks
are:
• Segmentation: Ensure that developer

environments are isolated from critical
production networks. This reduces the risk of
potential threats spreading from a compromised
developer workstation to critical systems.

• Regular Audits: Periodically audit developer
workstations for vulnerabilities, outdated
software, and unauthorized applications. Ensure
that all software is patched and up-to-date.

• Zero Trust Model: Implement a zero-trust
security model where every access request is
fully authenticated, authorized, and encrypted
before granting access.

2. Threat Actors
Both external attackers, such as foreign adversaries
and cyber-activists, and internal threats, like
disgruntled employees, pose significant risks to
the SSC. We can protect ourselves by:
• User Behavior Analytics (UBA): Gather relevant

events and use this information to monitor and
analyse users’ behaviours to detect anomalies
that might indicate potential threats in real time.

• Strict Access Controls: Ensure access to critical
systems and data is restricted based on roles.
Regularly review and update access permissions
to ensure the principle of Least Privilege.

3. Attack Vectors
Various methods, including malware, social

engineering, network-based, and physical attacks,
can target the software development environment.
We still can rely on:
• Endpoint Protection: Deploy advanced endpoint

protection solutions that can detect and block
malware in real time.

• Security Awareness Training: Regularly train
developers and staff on recognising and avoiding
social engineering tactics, such as phishing.

• Network Monitoring: Use intrusion detection
systems (IDS) and intrusion prevention systems
(IPS) to monitor and block suspicious network
activities.

• Physical Security: Ensure development centers
have robust physical security measures,
including surveillance cameras, biometric
access controls, and security personnel.

4. Attack Targets (Assets)
Critical assets like source code, credentials,

and sensitive data can be targeted by attackers
for theft, manipulation, or sabotage. Some
configurations the DevOps teams can implement
are:
• Data Encryption: Encrypt sensitive data at rest and

in transit to ensure that even if data is accessed,
it remains unintelligible to unauthorized users.

• Multi-Factor Authentication (MFA): Implement
MFA for accessing critical systems and
databases, adding an additional layer of security
beyond just passwords.

• Regular Backups: Ensure critical assets,
especially source code, are backed up regularly
in secure, off-site locations.

For seasoned DevOps professionals, embracing SSCS is the next step in the evolution, ensuring
they remain at the forefront of safe, efficient, and secure software delivery.
Navigating the complex landscape of Software Supply Chain (SSC) security requires a deep
understanding of the various risk factors and the strategies to counteract them.
Let’s explore each risk factor and its specific mitigation measures recommended in NIST SP
800-204D.

1111

5. Types of Exploits
Various tactics, from injecting vulnerabilities to
using stolen credentials, can be employed by at-
tackers to compromise the software supply chain.
To mitigate these tactics, the teams should adopt:
• Code Review: Implement strict code review pro-

cesses where multiple developers review code
changes to detect potential vulnerabilities or
malicious injections. Repository Security: En-
sure that code repositories have strict access
controls. Monitor repositories for unauthorized
changes or suspicious activities.

• Secure Development Practices: Train devel-
opers in secure coding practices to reduce the
chances of vulnerabilities being introduced in the
first place.

• Secure DevOps Infrastructure: Incorporate se-
curity testing and scanning tools into the CI/CD
infrastructure and establish secure configuration
management practices to ensure all infrastruc-
ture elements are adequately configured with ro-
bust security settings from access management
controls until secure communication channels.

6. Forking & Repository
Manipulation
Attackers can “fork” or copy a repository, make
malicious modifications, and then attempt to
merge these changes back into the original proj-
ect through a pull request. If not adequately re-
viewed, this can introduce malicious code into the
repository. Some critical mechanisms to detect or
avoid these attacks are:
• Pull Request Reviews: Implement a mandatory

multi-person review process for all pull requests,
especially those from external contributors. This
ensures that changes are thoroughly vetted be-
fore being merged.

• Automated Testing: Use automated testing tools
in the CI/CD pipelines to check pull requests for
potential security vulnerabilities, security flaws
or anomalies to identify them early and address
them promptly.

• Repository Access Control: Limit who can ap-
prove and merge pull requests. Ensure that only
trusted, trained individuals have this capability.

7. Lack of Code Integrity in
Public Repositories
When using open-source code, there’s no guaran-
tee that the pulled code is the same as the devel-
oper initially authored. Modifications could have
been made, introducing vulnerabilities or bypass-
ing checks in the CI/CD process. Avoid them with:
• Digital Signatures: Ensure code commits and

trusted developers digitally sign releases. This
provides a level of assurance about the code’s or-
igin and integrity.

• Dependency Scanning: Use tools to scan depen-
dencies for known vulnerabilities, ensuring you’re
not inadvertently introducing risks.

Source Verification: Whenever possible, verify the
integrity of open-source code by comparing it with
multiple trusted sources or repositories.

8. Insecure Build Systems
The systems and processes used to build soft-
ware can be targeted by attackers to introduce
vulnerabilities or malicious code. Avoid it via:
• Build System Hardening: Ensure that build sys-

tems are hardened against attacks. This includes
patching software, restricting access, and regu-
larly scanning for vulnerabilities.

• Immutable Build Environments: Use immutable
build environments created fresh for each build
and destroyed afterwards. This reduces the risk
of persistent threats.

9. Bypassing CI/CD Checks
Continuous Integration/Continuous Deployment
(CI/CD) processes can be bypassed, allowing po-
tentially harmful code to be deployed without un-
dergoing necessary checks and tests.
• Mandatory CI/CD Checks: Implement policies

that make CI/CD checks mandatory for all de-
ployments. No code should be deployed without
passing through this pipeline.

• Monitor CI/CD Tools: Regularly monitor and
audit CI/CD tools for any signs of tampering or
unauthorized access. In essence, while the chal-
lenges in SSC security are multifaceted, with a
proactive, detailed approach, we can ensure that
each potential vulnerability is addressed, ensur-
ing a robust and secure software development
environment.

5. Types of Exploits5. Types of Exploits
Various tactics, from injecting vulnerabilities toVarious tactics, from injecting vulnerabilities to
using stolen credentials, can be employed by atusing stolen credentials, can be employed by at-
tackers to compromise the software supply chain.
To mitigate these tactics, the teams should adopt:
• Code Review: Implement strict code review pro-

cesses where multiple developers review code
changes to detect potential vulnerabilities or
malicious injections. Repository Security: En-
sure that code repositories have strict access
controls. Monitor repositories for unauthorized
changes or suspicious activities.

• Secure Development Practices: Train devel-
opers in secure coding practices to reduce the
chances of vulnerabilities being introduced in the
first place.

• Secure DevOps Infrastructure: Incorporate se
curity testing and scanning tools into the CI/CD
infrastructure and establish secure configuration
management practices to ensure all infrastruc
ture elements are adequately configured with ro
bust security settings from access management
controls until secure communication channels.

6. Forking & Repository
Manipulation
Attackers can “fork” or copy a repository, make
malicious modifications, and then attempt to
merge these changes back into the original proj
ect through a pull request. If not adequately re
viewed, this can introduce malicious code into the
repository. Some critical mechanisms to detect or
avoid these attacks are:
• Pull Request Reviews:

multi-person review process for all pull requests,
especially those from external contributors. This
ensures that changes are thoroughly vetted be

7. Lack of Code Integrity in
Public Repositories
When using open-source co
tee that the pulled code is the same as the devel
oper initially authored. Modifications could have
been made, introducing vulnerabilities or bypass
ing checks in the CI/CD process. Avoid them with:
• Digital Signatures:

trusted developers digitally sign releases. This
provides a level of assurance about the code’s or

4. SSCS Risk Factors and DevOps
Mitigation Measures

12

The Expanding Attack Surface
Modern DevOps practices involve many tools and third-party components. The software
supply chain has grown complex, from container orchestration tools like Kubernetes to
package managers like npm or pip. Each integration, while enhancing functionality, intro-
duces potential vulnerabilities.
It’s akin to adding more doors and windows to a house – each new addition can be a po-
tential entry point unless adequately secured.

The Expanding Attack Surface
Recent years have witnessed a surge in supply chain attacks. Malevolent actors, recog-
nizing the potential vulnerabilities in third-party components, have targeted them to com-
promise larger systems. For instance, a single vulnerable library, if widely used, can affect
thousands of applications.
In a DevOps environment, where changes are continuously integrated, such vulnerabilities
can rapidly propagate, making the need for SSCS even more pronounced.

Maintaining trust and credibility
In DevOps isn’t just about speed; it’s about trust. Stakeholders trust that the continuous
flow of changes will maintain services. Integrating SSCS ensures that as code flows
through the DevOps pipeline, it’s continuously vetted for vulnerabilities, ensuring that trust
is maintained.

The Expanding Attack Surface
Modern DevOps practices involve many tools and third-party components. The software
supply chain has grown complex, from container orchestration tools like Kubernetes to
package managers like npm or pip. Each integration, while enhancing functionality, intro-
duces potential vulnerabilities.
It’s akin to adding more doors and windows to a house – each new addition can be a po-
tential entry point unless adequately secured.

CHAPTER 5

To appreciate the significance of SSCS, we first need to understand the es-
sence of DevOps. At its core, DevOps is about continuous integration and
continuous delivery (CI/CD). It’s a culture where code changes are automa-
tically tested, integrated, and deployed to production, ensuring faster relea-
se cycles and immediate feedback.
This continuous flow, while efficient, also means that vulnerabilities can
quickly move from development to production if not detected early.

Why SSCS is Crucial for Modern DevOps
Practices

13

5. Why SSCS is Crucial for Modern DevOps
Practices

Regulatory and Compliance Pressures
As data breaches become more common, regulatory bodies worldwide are tightening software se-
curity requirements. For many organizations, ensuring software supply chain security isn’t just about
best practices but compliance.
Failing to meet security standards can lead to hefty penalties, making SSCS integration not just a
technical requirement but a legal one.

The Proactive Approach of SSCS in DevOps
SSCS isn’t about reactive measures; it’s proactive. It’s about identifying and addressing vulnerabilities
before they become threats.
In the DevOps world, where feedback loops are tight, SSCS provides immediate insights into potential
security issues, allowing teams to address them in real-time.

5. Why SSCS is Crucial for Modern DevOps
Practices

Why SSCS is Crucial for Modern DevOps
Practices

Why SSCS is Crucial for Modern DevOps

Regulatory and Compliance Pressures
As data breaches become more common, regulatory bodies worldwide are tightening software se-
curity requirements. For many organizations, ensuring software supply chain security isn’t just about
best practices but compliance.
Failing to meet security standards can lead to hefty penalties, making SSCS integration not just a
technical requirement but a legal one.

The Proactive Approach of SSCS in DevOps
SSCS isn’t about reactive measures; it’s proactive. It’s about identifying and addressing vulnerabilities
before they become threats.
In the DevOps world, where feedback loops are tight, SSCS provides immediate insights into potential
security issues, allowing teams to address them in real-time.

SSCS is the backbone of modern cloud-native application development and deployment. DevOps is a journey that
begins with code sourced from various repositories, be it in-house or third-party, open-source, or commercial.
This code undergoes a series of meticulously orchestrated tasks, from building and packaging to testing and
deployment.
Imagine the CI/CD pipeline as a sophisticated assembly line. Code, akin to raw materials, is transformed through
various stages. It’s built based on application logic-driven dependencies, creating build artifacts stored in specific
repositories. These artifacts undergo rigorous testing, leading to the generation of deployable packages. Before
these packages reach their final destination, be it a testing or production environment, they’re scanned meticu-
lously for vulnerabilities.
This entire transformation, from raw code to deployable packages, is facilitated by workflows within CI/CD pipe-
lines. Platforms like GitHub Actions, GitLab Runners, and Buildcloud are the powerhouses supporting these work-
flows.

The robustness of software pipelines has gained significant attention lately as incidents targeting software sup-
ply chains have risen. Organizations must meticulously select third-party software, products, and tools for their
software frameworks. Simultaneously, they must implement strategies to safeguard the authenticity of their
software components and the processes of building and deploying them. Constructing software that possesses
confirmable security stands as a pivotal element of SSCS.

The Essence of SSCS and CI/CD Pipelines

14

CHAPTER 6

SSCS is a critical component of overall cybersecurity. By implementing
SSCS practices, organizations can help to protect themselves from the
risks of malicious code injection, supply chain compromise, and data
breaches. This can help to improve the security and reliability of their
software and protect their business from reputational damage and
financial losses.

Implementing SSCS in DevOps

CHAPTER 6

SSCS is a critical component of overall cybersecurity. By implementing SSCS is a critical component of overall cybersecurity. By implementing
SSCS practices, organizations can help to protect themselves from the SSCS practices, organizations can help to protect themselves from the
risks of malicious code injection, supply chain compromise, and data risks of malicious code injection, supply chain compromise, and data
breaches. This can help to improve the security and reliability of their breaches. This can help to improve the security and reliability of their
software and protect their business from reputational damage and software and protect their business from reputational damage and

Implementing SSCS in DevOps

15

In cybersecurity, the term “Zero Trust” has gained
prominence. It’s a paradigm shift, focusing on
protecting assets and resources, from services and
applications to hardware systems like servers. Un-
like traditional models where trust is implicit, Zero
Trust demands verification. Every entity, a user,
service, or server, must prove its legitimacy through
robust authentication. Only then they are granted
access based on well-defined enterprise policies.

However, when we pivot to SSC, the focus narrows
down to the integrity of artifacts and their storage
repositories. It’s a world where trust is a byproduct
of assured integrity. As artifacts traverse through
various repositories, evolving and integrating, they
eventually shape the final product. Ensuring the
unblemished integrity of these artifacts and re-
positories is paramount, for this integrity fosters
trust.

Platforms like GitHub Actions exemplify the inte-
gration of security measures within CI/CD plat-
forms, enabling developers to automate and se-
cure their entire software lifecycle seamlessly.
Regarding SSCS, two primary security objectives
stand out:

• Defensive Measures: The pipeline should be for-
tified with many defensive strategies, ensuring
that malicious entities can’t tamper with the soft-
ware production processes or sneak in harmful
software updates. Think of it as having a secure
foundation for the entire build process.

• Integrity Assurance: Every artifact within the
SDLC, from repositories to the tiniest piece of
code, should maintain its integrity. It is achieved
by defining roles and authorisations for every ac-
tor involved in the process. It’s about ensuring
that every piece fits perfectly, maintaining the
sanctity of the final product.

The framework established for CI pipelines must
be robust and versatile. It should be adept at sup-
porting not only the avant-garde, cloud-native
software development environments but also the
more traditional, legacy (and even on-premises)
systems. Adherence to standard evidence struc-
tures, such as metadata and digital signatures, is
non-negotiable.

Furthermore, this framework should be versa-
tile enough to be compatible across a myriad of
hardware and software platforms. It should be
designed with an inherent capability to generate
evidence that validates its processes.

15

In cybersecurity, the term “Zero Trust” has gained
prominence. It’s a paradigm shift, focusing on
protecting assets and resources, from services and
applications to hardware systems like servers. Un-
like traditional models where trust is implicit, Zero
Trust demands verification. Every entity, a user,
service, or server, must prove its legitimacy through
robust authentication. Only then they are granted
access based on well-defined enterprise policies.

However, when we pivot to SSC, the focus narrows
down to the integrity of artifacts and their storage
repositories. It’s a world where trust is a byproduct
of assured integrity. As artifacts traverse through
various repositories, evolving and integrating, they
eventually shape the final product. Ensuring the
unblemished integrity of these artifacts and re-
positories is paramount, for this integrity fosters
trust.

Platforms like GitHub Actions exemplify the inte-
gration of security measures within CI/CD plat-
forms, enabling developers to automate and se-
cure their entire software lifecycle seamlessly.
Regarding SSCS, two primary security objectives
stand out:

• Defensive Measures: The pipeline should be for-
tified with many defensive strategies, ensuring
that malicious entities can’t tamper with the soft-
ware production processes or sneak in harmful
software updates. Think of it as having a secure
foundation for the entire build process.

• Integrity Assurance: Every artifact within the
SDLC, from repositories to the tiniest piece of
code, should maintain its integrity. It is achieved
by defining roles and authorisations for every ac-
tor involved in the process. It’s about ensuring
that every piece fits perfectly, maintaining the
sanctity of the final product.

The framework established for CI pipelines must
be robust and versatile. It should be adept at sup-
porting not only the avant-garde, cloud-native
software development environments but also the
more traditional, legacy (and even on-premises)
systems. Adherence to standard evidence struc-
tures, such as metadata and digital signatures, is
non-negotiable.

Furthermore, this framework should be versa-
tile enough to be compatible across a myriad of
hardware and software platforms. It should be
designed with an inherent capability to generate
evidence that validates its processes.

In cybersecurity, the term “Zero Trust” has gained
prominence. It’s a paradigm shift, focusing on
protecting assets and resources, from services and
applications to hardware systems like servers. Un
like traditional models where trust is implicit, Zero
Trust demands verification. Every entity, a user,
service, or server, must prove its legitimacy through
robust authentication. Only then they are granted
access based on well-defined enterprise policies.

However, when we pivot to SSC, the focus narrows
down to the integrity of artifacts and their storage
repositories. It’s a world where trust is a byproduct
of assured integrity. As artifacts traverse through
various repositories, evolving and integrating, they
eventually shape the final product. Ensuring the
unblemished integrity of these artifacts and re
positories is paramount, for this integrity fosters
trust.

Platforms like GitHub Actions exemplify the inte

6. Implementing SSCS
in DevOps

16

The tools and platforms that underpin DevOps operations play a pivotal
role in Continuous Integration. Their utility isn’t just in facilitating
seamless development and deployment; they are also instrumental
in ensuring the security and integrity of the entire process. Central
to this is the meticulous configuration of security settings within
these tools.

For instance, branch protection is a crucial feature in version control
systems like Git. By safeguarding critical branches, it ensures that
inadvertent or malicious changes don’t compromise the codebase.
This protection can be further bolstered by mandating code reviews
before any merge, ensuring that a second pair of eyes scrutinise
every change. Such mandatory reviews not only catch potential
security vulnerabilities but also uphold coding standards and prevent
technical debt.

Moreover, settings that prevent force pushes can protect the commit
history, ensuring a transparent and traceable lineage of code changes.
This is invaluable for audits and understanding the evolution of the
codebase. Similarly, integrating automated security checks and
scans as part of the pull request process can catch vulnerabilities
before merging.

Furthermore, platforms like Jenkins, GitLab, and others have become
the cornerstones of many CI pipelines, largely due to their extensibility
through plugins. However, this very strength can also be a potential
Achilles’ heel if not managed with caution.

Every tool or plugin integrated into a CI system introduces potential
vulnerabilities. Some might be outdated, others could be poorly
maintained, and a few might even be malicious or have known
security issues yet to be addressed. Such vulnerable components can
jeopardize the entire CI pipeline, making it susceptible to breaches,
data leaks, or even complete takeovers.

To mitigate these risks, organizations must adopt a proactive
approach. Regularly auditing and updating tools and plugins is a
start. Automated vulnerability scanners should be employed to
continuously monitor for known issues in the tools and plugins in
use. When vulnerabilities are detected, immediate action, patching
or replacing the vulnerable component, is essential.

Ensure Security Configuration
in DevOps Tools
The tools and platforms that underpin DevOps operations play a pivotal
role in Continuous Integration. Their utility isn’t just in facilitating
seamless development and deployment; they are also instrumental
in ensuring the security and integrity of the entire process. Central
to this is the meticulous configuration of security settings within
these tools.

For instance, branch protection is a crucial feature in version control
systems like Git. By safeguarding critical branches, it ensures that
inadvertent or malicious changes don’t compromise the codebase.
This protection can be further bolstered by mandating code reviews
before any merge, ensuring that a second pair of eyes scrutinise
every change. Such mandatory reviews not only catch potential
security vulnerabilities but also uphold coding standards and prevent
technical debt.

Moreover, settings that prevent force pushes can protect the commit
history, ensuring a transparent and traceable lineage of code changes.
This is invaluable for audits and understanding the evolution of the
codebase. Similarly, integrating automated security checks and
scans as part of the pull request process can catch vulnerabilities
before merging.

Furthermore, platforms like Jenkins, GitLab, and others have become
the cornerstones of many CI pipelines, largely due to their extensibility
through plugins. However, this very strength can also be a potential
Achilles’ heel if not managed with caution.

Every tool or plugin integrated into a CI system introduces potential
vulnerabilities. Some might be outdated, others could be poorly
maintained, and a few might even be malicious or have known
security issues yet to be addressed. Such vulnerable components can
jeopardize the entire CI pipeline, making it susceptible to breaches,

To mitigate these risks, organizations must adopt a proactive

Ensure Security Configuration
in DevOps Tools
Ensure Security Configuration
in DevOps Tools
Ensure Security Configuration

6. Implementing SSCS
in DevOps

01

03

05

06

Ensure Proper
Security Settings

Take special attention to new
capabilities on systems and tools

Monitor anomalous
user activity

Check User
Privileges

Optimize User Access and
Eliminate Unnecessary Privileges

Review Security
Procedures

Find improvements
of security posture

Schedule regular audit

04

02

Conduct Audit

Anomaly
Detection

Prioritize
Vulnerabilities

Update Vulnerable
Tools and Plugins

PROACTIVE RISK MITIGATION

1717

6. Implementing SSCS
in DevOps

Continuous Deployment is the place where
the culmination of development efforts meets
the real-world environment. A series of due
diligence measures is indispensable to ensure
the sanctity of this transition. These measures,
often articulated as verification policies, serve
as the gatekeepers, determining which artifacts
are fit for deployment.

One of the foundational controls during
deployment revolves around the build
information. Suppose an organization has
invested in establishing a secure build
environment. In that case, it becomes
imperative to ensure that any artifact, such as
a component, an executable, or a container
image, earmarked for deployment is a product
of this trusted process. It is not just about trust
but about maintaining a consistent security
posture throughout the software lifecycle.
SSCS proactive measures empower DevOps

teams to ensure that only vetted and verified
software assets are integrated into the
environment, maintaining their trustworthiness
even during runtime. Even code that has been
stored in repositories, primed for deployment,
should be subjected to security scans,
especially to detect embedded secrets like keys
and access tokens. Additionally, before any
pull request merges, a thorough review should
be conducted to identify any vulnerabilities,
ensuring the codebase remains pristine.

SSCS approach is holistic, encompassing
everything from scanning any artefact as
soon as it is built to managing it using tools
seamlessly integrating with CD pipelines.

Strengthen the Security of Continous Deployment
(CD) pipelines

18

Continous Integration stages encompass build operations, where raw code metamorphoses into
executable software; push/pull operations, which dictate how code is managed across both public
and private repositories; software updates to ensure the software remains current and functional;
and code commits, which finalize and store the changes made to the software.

Enhanced Security and Integrity in Continous
Integration (CI) pipelines

In the realm of Software Supply Chain (SSC) security assurance, the build process is paramount. It demands
a clear delineation of policies that touch upon the platform used for the build, the tools employed, and
the authentication protocols required for developers overseeing the build process. But setting these
policies is just the beginning. They must be rigorously enforced, monitored, and, if necessary, adapted
to the ever-evolving software development landscape.
A cornerstone of this process is creating an evidence trail that spans the entire Software Development
Life Cycle (SDLC). This isn’t just a passive log but a dynamic record, encompassing details from the
hash of the final build artifact to the minutiae of events that transpired during the build. Once collated,
this evidence is securely signed, serving as an unimpeachable testament to the software’s quality.

Secure Building

In the intricate dance of CI/CD pipelines, code doesn’t exist in isolation. It resides in repositories, waiting to
be extracted, modified, and then returned. These actions, termed pull and push operations, are gateways that
need vigilant guarding. Ensuring the security of these operations hinges on two pivotal checks:

• A rigorous authentication protocol that verifies the developers’ credentials and
• A mechanism to vouch for the integrity of the code within the repository.

But how does one ensure this trustworthiness? The answer lies in a multi-pronged approach. It involves running
automated checks on all pull requests, ensuring CI pipelines are triggered only when the source code’s origin
is beyond reproach, and leveraging built-in protections in source code management systems.

Secure Pull-Push Operations

Before any piece of code is committed, it undergoes a series of tests. These tests, conducted using
Static Application Security Testing (SAST) to detect any vulnerability of malicious pieces of code or
backdoors, should be tailored to the unique demands of cloud-native applications. If the code relies
on open-source modules, dependencies must be meticulously detected using Software Composition
Analysis (SCA) tools.
A pivotal SSC security measure during code commits is the vigilant prevention of secrets being
inadvertently embedded within the code or dangerous configuration on the IaC files. This is achieved
through a vigilant scanning operation, resulting in a feature termed as push protection.

Secure Code Commits

6. Implementing SSCS
in DevOps

1919

A significant threat to these software update systems is the potential targeting of the evidence generation
process. Adversaries aim to obliterate the traceability of updates, making it challenging to ascertain
the legitimacy of the updates. In essence, they seek to blur the lines between genuine and malicious
updates, thereby compromising the integrity of the software.

Software update systems manifest in various forms, each catering to specific needs:

• Package Managers: These are comprehensive systems responsible for managing all software
installed on a device or system.

• Software Library Managers: These systems manage and install software extensions, such as
plugins or specific programming language libraries.

• Application Updaters: These specialised systems oversee updates for individual applications.

At the heart of a software update system’s operation is the identification and subsequent downloading of essential
files for a given update. While it might seem that verifying the signatures on the metadata of files or packages
would suffice to establish trust, the reality is more nuanced. The process of signature generation itself can be
susceptible to various attacks, necessitating a plethora of additional security measures to ensure the integrity
of signatures and their verification.

As the landscape of threats evolves, so does the framework designed to bolster the security of software update
systems. This framework, a composite of libraries, file formats, and utilities, is tailored to fortify new and existing
software update systems. Several consensus-driven goals underpin this framework:

• Robust Protection: The framework should be adept at shielding software update systems from all
recognized threats. It includes threats to metadata generation, the signing process, management of
signing keys, and the integrity of the signing authority. Furthermore, it should ensure the validity of keys
and the verification of signatures.

• Mitigating Key Compromise: The framework should be designed to minimize the ramifications of a key
compromise. This entails supporting roles with multiple keys and implementing threshold or quorum trust
mechanisms. Notably, roles associated with highly vulnerable keys should be insulated from significant
impacts. As a testament to this, online keys, which are used in automated processes, should never be
employed for roles that have clients’ trust for installing files.

The integrity of attestations and evidence in
Software Update Systems

A significant threat to these software update systems is the potential targeting of the evidence generation
process. Adversaries aim to obliterate the traceability of updates, making it challenging to ascertain
the legitimacy of the updates. In essence, they seek to blur the lines between genuine and malicious
updates, thereby compromising the integrity of the software.

Software update systems manifest in various forms, each catering to specific needs:

• Package Managers: These are comprehensive systems responsible for managing all software
installed on a device or system.

• Software Library Managers:
plugins or specific programming language libraries.

• Application Updaters:

At the heart of a software update system’s operation is the identification and subsequent downloading of essential
files for a given update. While it might seem that verifying the signatures on the metadata of files or packages
would suffice to establish trust, the reality is more nuanced. The process of signature generation itself can be
susceptible to various attacks, necessitating a plethora of additional security measures to ensure the integrity
of signatures and their verification.

As the landscape of threats evolves, so does the framework designed to bolster the security of software update
systems. This framework, a composite of libraries, file formats, and utilities, is tailored to fortify new and existing
software update systems. Several consensus-driven goals underpin this framework:

The integrity of attestations and evidence in
Software Update Systems

6. Implementing SSCS
in DevOps

20

CHAPTER 7

Amidst the myriad of security measures and protocols, one concept
emerges as the cornerstone of trust and reliability: attestation. Serving as
the bedrock of verification, attestation provides a tangible, verifiable assu-
rance that each component and process within the software ecosystem
adheres to the highest standards of integrity.

Attestations for Secure Software
Development

20

CHAPTER 7

Amidst the myriad of security measures and protocols, one concept
emerges as the cornerstone of trust and reliability: attestation. Serving as
the bedrock of verification, attestation provides a tangible, verifiable assu
rance that each component and process within the software ecosystem
adheres to the highest standards of integrity.

Attestations for Secure Software
Development

21

7. Attestations for Secure Software
Development

Critical Components of a Software Attestation
Solution

Verifier
But how do we know if the judge isn’t
biased? Enter the verifier. It’s an independent
component that validates the attestations,
ensuring they are genuine and backed by a
trusted authority.

Reporting Dashboard
For those who want a bird’s eye view of the
entire process, the reporting dashboard
offers a transparent and comprehensive
overview. It’s a window into the software’s
security posture, presenting stakeholders
with insights into every piece of evidence
and every attestation.

Evidence Collector
Think of this as the detective in a crime
novel. The evidence collector’s role is to
meticulously gather evidence from every
nook and cranny of the software development
lifecycle. Whether logs from a CI/CD pipeline,
configurations of a deployed instance, or
test results from a QA phase, the collector
ensures nothing slips through.

Secure Storage
Once evidence is in hand, it’s imperative to
keep it safe. This is where secure storage
steps in. More than just a digital locker, this
encrypted and often distributed storage
ensures the evidence remains untampered
and always available for scrutiny.

Attestation Engine
If the evidence collector is the detective, the
attestation engine is the judge. It weighs the
collected evidence, assesses its integrity,
and generates attestations based on this
assessment. These attestations, in essence,
are digital affirmations that vouch for the
software’s security and compliance.

2222

7. Attestations for Secure Software
Development

The Attestation Workflow: From Collection to
Verification
Attestation workflow stands as the sentinel of software integrity, orchestrating a series of checks
and validations to ensure every component’s authenticity. This systematic process forms the back-
bone of trust, bridging the gap between security protocols and their real-world implementation. The
usual steps for generating and gathering attestations are:

Verification Engine
Policy engine with verification
capabilities so a client can verify the
integrity of the artifact(s) from the
ledger before installing / running the
artifact(s).

Xygeni Verifier to check
attestations against defined policies

Ledger
Attestations repository or “ledger”
that keeps evidences preserve

Cloud/Onprem Xygeni Ledger

Attestations
Authenticated metadata
about software artifacts
produced by each build step,
linked with the inputs
(“materials”)

Xygeni provides specific
“actions” to generate
provenance attestations

Additional measures
• Secure build services (pipeline

templates, dedicated, minimal set
of resources)

• Immutable scripted builds
• Ephemeral, isolated builds

(container-based disposed after
usage)

• Hermetic build systems (no
internet access)

Xygeni provides detectors that raise
issues on weak/unsecure SCM/CICD
configurations

23

7. Attestations for Secure Software
Development

1. Defining the contract
The build Contract in Xygeni defines the expectations regarding the content a build must send as part
of their attestation. It could include specific details like the URI@digest of the generated container
image, the container rootfs used during the build, and the Software Bill of Materials (SBOM) of that
container image. Contracts are an essential piece of the attestation process. In essence, Contracts
are like safety nets, ensuring that every building process meets the set standards and expectations.
They are composed (among other less relevant) of:

• Materials: This is the core of the contract. It specifies the types of evidence or artefacts the build
should include in its attestation. Whether it’s a container image, an artefact, or a specific SBOM
format, the materials section ensures that nothing is missed.

• Environment Allow List: This is a curated list of environment variables. When the build sends its
attestation, only the variables on this list will be included, ensuring irrelevant or sensitive data is
left out.

• Runner Context: This specifies where the attestation process will run. For instance, if you’re using
GitHub Actions, the runner type would be “GITHUB_ACTION”, ensuring the attestation is tailored to
that environment.

2. Integration into Pipelines
Before we can embark on the journey of attestation, it’s crucial to lay a solid foundation. It involves
weaving the attestation solution into the very fabric of the CI/CD pipelines. By configuring the pipe-
lines with the necessary hooks, triggers, and listeners, we pave the way for a smooth interaction with
attestation tools.

3. Generation of Attestations
With the stage set, we move to the heart of the process: generating attestations. Using the attesta-
tion predicate, such as the in-toto attestation predicate format, a narrative of the software’s journey
is crafted. This narrative, or attestation, is a testament to the software’s integrity, detailing every step
it has undergone. For instance, in-toto’s layout files define the expected software supply chain steps,
painting a clear picture of the software’s journey from conception to deployment.

4. Safekeeping the Evidence
Once the attestations are generated, they are not left adrift. They are securely stored, ensuring their
integrity remains untarnished. Think of this as a vault, where every piece of evidence, every attesta-
tion, is kept safe from prying eyes and malicious intents. Solutions like Xygeni offer robust storage
options, ensuring the attestations remain unaltered and ready for validation.

24

5. Verification
With the attestations safely stored, they are then put to the test. The mere presence of attestations
isn’t enough. Their validity and authenticity need to be verified. This validation process is where the
software’s narrative, the attestations, are cross-examined against the actual steps the software un-
derwent, the contract.

Verification is the act of cross-referencing the attestations against a predefined contract. It’s like a
gatekeeper that checks each visitor’s credentials before allowing them entry. The contract, in this con-
text, is a set of rules or criteria that the attestations must meet. If they do, the workflow progresses;
if not, it’s halted or flagged.

One of the foundational principles of verification is monotonicity. In simple terms, monotonicity dic-
tates that a system should be inherently secure by design. If there’s any ambiguity or uncertainty, the
system should default to a “fail-closed” state rather than an “open” one. This means that if there’s any
doubt about the validity of an attestation, the system should assume it’s invalid.

Imagine a security system at a high-profile facility. If a visitor’s credentials are questionable, the sys-
tem shouldn’t grant them access by default. Instead, it should deny access until the credentials are
verified. The same principle applies to attestation verification. If an attacker manages to delete or
obscure an attestation, the verifier should automatically flag it as “deny” due to the missing required
attestation.

Upon verification, there are two primary responses:

• Enforced Denial: This is the strictest form of denial. If an attestation doesn’t meet the policy’s
criteria, the associated artefact cannot run. It’s a hard stop, ensuring potential threats are nipped
in the bud.

• Alerted Denial: This is a more lenient form of denial. The artefact is allowed to run, but a warning
notification is emitted. It’s like allowing visitors into a facility but keeping a close eye on them.

Tools like Xygeni come into play here, offering a meticulous validation process that leaves no stone
unturned.

6. Reporting and Insights

Post-validation, a detailed report is generated. This report is not just a testament to the software’s
integrity but also offers insights into its journey. The reporting and insights come into play, offering
a panoramic view of the software’s security posture and providing actionable intelligence to fortify it
further. The system must proactively bring potential threats to the attention of relevant stakeholders.
Key features of this alerting mechanism include:

• Real-time Notifications: The moment an anomaly is detected, be it a missing attestation or a
mismatch, the system should trigger instant notifications to designated personnel.

• Multi-channel Alerts: Notifications should be sent across multiple channels – emails, dashboard
alerts, or even integrations with platforms like Slack. It ensures that no alert goes unnoticed.

• Contextual Alerts: Every alert should be accompanied by contextual information. Which part of
the workflow triggered it? What’s the potential impact? This context empowers teams to act swiftly
and decisively.

7. Attestations for Secure Software
Development

2525

CHAPTER 8

The integration of Software Supply Chain Security into DevOps is a
game-changer. It amalgamates the agility and efficiency of DevOps with
the robustness of advanced security frameworks, paving the way for
software solutions that are not just high-performing but also secure and
trustworthy.

Benefits of Embracing SSCS in
DevOps Environments

26

8. Benefits of Embracing SSCS in
DevOps Environments

26

8. Benefits of Embracing SSCS in
DevOps Environments

Benefits of Embracing SSCS in
DevOps Environments

Benefits of Embracing SSCS in

The integration of Software Supply Chain Security into DevOps is a game-changer. It amalgamates
the agility and efficiency of DevOps with the robustness of advanced security frameworks, paving
the way for software solutions that are not just high-performing but also secure and trustworthy.
Here’s a deep dive into the multifaceted advantages of this integration:

Enhanced Security Posture and Shift Left

At its core, SSCS is designed to safeguard every phase of the software development
lifecycle. By integrating SSCS into DevOps, organisations can ensure that vulnerabilities
are identified and mitigated early, reducing the risk of security breaches and ensuring the
integrity of the software.

Streamlined Compliance

Regulatory landscapes constantly evolve, and non-compliance can result in hefty penalties.
SSCS frameworks often align with industry standards and regulations, making it easier
for organisations to adhere to compliance requirements and confidently navigate audits.

Increased Trust and Credibility

In an age where data breaches are commonplace, organisations that prioritise security are
often viewed more favourably by clients and stakeholders. By adopting SSCS, businesses
can bolster their reputation, instil trust in their clientele, and differentiate themselves from
competitors.

Cost-Efficiency

Addressing security issues post-deployment can be a costly affair, both in terms of financial
implications and reputational damage. SSCS, when integrated into DevOps, ensures that
security is baked into the process from the outset, leading to significant cost savings in
the long run.

2727

Accelerated Deployment

One of the hallmarks of DevOps is rapid deployment. With SSCS in place, security checks
and validations become part of the continuous integration and deployment pipeline. It
means that secure code can be deployed faster without compromising on security.

Collaborative Security Culture

SSCS promotes a culture where security is everyone’s responsibility. By integrating it into
DevOps, security becomes a collaborative effort, bridging the gap between development
and security teams and fostering a more cohesive and proactive approach to security
challenges.

Future-Proofing

As cyber threats become more sophisticated, having a robust SSCS framework ensures
that organisations are not just responding to current threats but are also prepared for
future challenges. This proactive approach ensures longevity and resilience in an ever-
changing digital ecosystem.

8. Benefits of Embracing SSCS in
DevOps Environments

28

CONCLUDING REMARKS
Concluding Remarks: Integrating Security
Supply Chain Practices into DevSecOps with
NIST SP 800-204D

In the ever-shifting digital landscape, software supply chain security (SSCS) stands as
a crucial pillar of cybersecurity for organizations of all sizes. As DevOps practices gain
prominence, the demand for SSCS will only intensify. Organizations that prioritize SSCS
will be well-equipped to safeguard their supply chains and avert vulnerabilities from
infiltrating their applications. By implementing robust SSCS measures, organizations can
mitigate the risk of data breaches, reputational damage, and substantial financial losses.

The ebook has provided a comprehensive overview of SSCS, encompassing the inherent risks
and challenges, along with effective strategies to mitigate those threats. It has also underscored
the significance of NIST SP 800-204D as a guiding framework for SSCS implementation.

In the intricate dance of CI/CD pipelines, code doesn’t exist in isolation. It resides in repositories,
waiting to be extracted, modified, and then returned. These actions, termed pull and push operations,
are gateways that need vigilant guarding. Ensuring the security of these operations hinges on two
pivotal checks:

• SSCS is a dynamic and evolving domain. New vulnerabilities emerge regularly, and attack
vectors evolve constantly, necessitating vigilant adaptation of SSCS strategies.

• SSCS transcends mere technical expertise; it demands a cultural shift within organizations.
Developers, security teams, and other stakeholders must collaborate seamlessly to establish
a secure supply chain.

• SSCS investment is a sound decision yielding substantial benefits, including reduced costs,
enhanced security posture, and improved customer satisfaction.

In conclusion, SSCS is an indispensable asset for organizations seeking to safeguard their
software and businesses from cyber threats. By embracing best practices and continuous
improvement, organizations can construct a resilient and secure software supply chain capable
of navigating the complexities of the modern digital landscape. As DevOps continues its
transformative journey, organizations must prioritize SSCS to maintain their competitive edge
and enduring success.

29

Navigating the Future of
Software Supply Chain Security:
A NIST SP 800-204D Perspective
Securing the Software Supply Chain
in the DevOps Era: A Practical Guide

Contact
Get in touch today!

www.xygeni.io
https://www.linkedin.com/company/xygeni
https://twitter.com/xygeni

http://www.xygeni.io
https://www.linkedin.com/company/xygeni
https://twitter.com/xygeni
https://www.linkedin.com/company/xygeni

https://twitter.com/xygeni
http://www.xygeni.io

